Principle behind radiometric dating

Principle behind radiometric dating

principle behind radiometric dating

Sep 09,  · What is the principle behind Radiometric dating? Update Cancel. Answer Wiki. 1 Answer. What other scientific methods besides radiometric dating are used to study ancient ancient history? What is the fundamental principle behind ionic product? Ask New Question. Radiometric Dating: Calibrating the Relative Time Scale. For almost the next years, geologists operated using relative dating methods, both using the basic principles . Video: Principles of Radiometric Dating Radiometric dating is a method used to determine the age of rocks and other materials based on the rate of radioactive decay.
principle behind radiometric dating
Anyone can earn credit-by-exam regardless of age or education level. Luminescence dating methods are not radiometric dating methods in that they do not rely on abundances of isotopes to calculate age. These methods can be used to date the age of a sediment layer, as layers deposited on top would prevent the grains from being "bleached" and reset by sunlight. Are you still watching? Use different radiogenic systems to date the same rocks.

Principles of isotopic dating

Cambridge Core - Geochemistry and Environmental Chemistry - Principles of Radiometric Dating - by Kunchithapadam Gopalan. Outline of lecture topics and hands-on activities for introducing radiometric dating . What is incredibly powerful in this against an age estimates for the basic principle behind radiometric dating, we. Explain the rocks. A summary by certain other. Principles of Radiometric Dating. Naturally-occurring radioactive materials break down into other materials at known rates. This is known as radioactive decay.

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system. These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. This temperature is what is known as closure temperature and represents the temperature below which the mineral is a closed system to isotopes.

Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. This field is known as thermochronology or thermochronometry. The mathematical expression that relates radioactive decay to geologic time is [12] [15]. The equation is most conveniently expressed in terms of the measured quantity N t rather than the constant initial value N o.

The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its closure temperature.

Radiometric Dating


This is well-established for most isotopic systems. Plotting an isochron is used to solve the age equation graphically and calculate the age of the sample and the original composition. Radiometric dating has been carried out since when it was invented by Ernest Rutherford as a method by which one might determine the age of the Earth.

In the century since then the techniques have been greatly improved and expanded. The mass spectrometer was invented in the s and began to be used in radiometric dating in the s. It operates by generating a beam of ionized atoms from the sample under test. The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as " Faraday cups ", depending on their mass and level of ionization. On impact in the cups, the ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams.

Uranium—lead radiometric dating involves using uranium or uranium to date a substance's absolute age. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years. Uranium—lead dating is often performed on the mineral zircon ZrSiO 4 , though it can be used on other materials, such as baddeleyite , as well as monazite see: Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert.

Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of the event. One of its great advantages is that any sample provides two clocks, one based on uranium's decay to lead with a half-life of about million years, and one based on uranium's decay to lead with a half-life of about 4. This can be seen in the concordia diagram, where the samples plot along an errorchron straight line which intersects the concordia curve at the age of the sample.

This involves the alpha decay of Sm to Nd with a half-life of 1. Accuracy levels of within twenty million years in ages of two-and-a-half billion years are achievable. This involves electron capture or positron decay of potassium to argon Potassium has a half-life of 1. This is based on the beta decay of rubidium to strontium , with a half-life of 50 billion years. This scheme is used to date old igneous and metamorphic rocks , and has also been used to date lunar samples. Closure temperatures are so high that they are not a concern. Rubidium-strontium dating is not as precise as the uranium-lead method, with errors of 30 to 50 million years for a 3-billion-year-old sample.

A relatively short-range dating technique is based on the decay of uranium into thorium, a substance with a half-life of about 80, years. It is accompanied by a sister process, in which uranium decays into protactinium, which has a half-life of 32, years. While uranium is water-soluble, thorium and protactinium are not, and so they are selectively precipitated into ocean-floor sediments , from which their ratios are measured. The scheme has a range of several hundred thousand years. A related method is ionium—thorium dating , which measures the ratio of ionium thorium to thorium in ocean sediment.

Radiocarbon dating is also simply called Carbon dating. Carbon is a radioactive isotope of carbon, with a half-life of 5, years, [25] [26] which is very short compared with the above isotopes and decays into nitrogen. Carbon, though, is continuously created through collisions of neutrons generated by cosmic rays with nitrogen in the upper atmosphere and thus remains at a near-constant level on Earth. The carbon ends up as a trace component in atmospheric carbon dioxide CO 2. A carbon-based life form acquires carbon during its lifetime. Plants acquire it through photosynthesis , and animals acquire it from consumption of plants and other animals.

When an organism dies, it ceases to take in new carbon, and the existing isotope decays with a characteristic half-life years. The proportion of carbon left when the remains of the organism are examined provides an indication of the time elapsed since its death. This makes carbon an ideal dating method to date the age of bones or the remains of an organism. The carbon dating limit lies around 58, to 62, years. The rate of creation of carbon appears to be roughly constant, as cross-checks of carbon dating with other dating methods show it gives consistent results.

However, local eruptions of volcanoes or other events that give off large amounts of carbon dioxide can reduce local concentrations of carbon and give inaccurate dates. The releases of carbon dioxide into the biosphere as a consequence of industrialization have also depressed the proportion of carbon by a few percent; conversely, the amount of carbon was increased by above-ground nuclear bomb tests that were conducted into the early s.

Also, an increase in the solar wind or the Earth's magnetic field above the current value would depress the amount of carbon created in the atmosphere. This involves inspection of a polished slice of a material to determine the density of "track" markings left in it by the spontaneous fission of uranium impurities. The uranium content of the sample has to be known, but that can be determined by placing a plastic film over the polished slice of the material, and bombarding it with slow neutrons.

This causes induced fission of U, as opposed to the spontaneous fission of U. I thought it would be useful to present an example where the geology is simple, and unsurprisingly, the method does work well, to show the quality of data that would have to be invalidated before a major revision of the geologic time scale could be accepted by conventional scientists. Geochronologists do not claim that radiometric dating is foolproof no scientific method is , but it does work reliably for most samples.

It is these highly consistent and reliable samples, rather than the tricky ones, that have to be falsified for "young Earth" theories to have any scientific plausibility, not to mention the need to falsify huge amounts of evidence from other techniques. This document is partly based on a prior posting composed in reply to Ted Holden. My thanks to both him and other critics for motivating me. Much of the Earth's geology consists of successional layers of different rock types, piled one on top of another.

The most common rocks observed in this form are sedimentary rocks derived from what were formerly sediments , and extrusive igneous rocks e. The layers of rock are known as "strata", and the study of their succession is known as "stratigraphy". Fundamental to stratigraphy are a set of simple principles, based on elementary geometry, empirical observation of the way these rocks are deposited today, and gravity. A few principles were recognized and specified later. An early summary of them is found in Charles Lyell's Principles of Geology , published in , and does not differ greatly from a modern formulation:.

Note that these are principles. In no way are they meant to imply there are no exceptions. For example, the principle of superposition is based, fundamentally, on gravity. In order for a layer of material to be deposited, something has to be beneath it to support it. It can't float in mid-air, particularly if the material involved is sand, mud, or molten rock. The principle of superposition therefore has a clear implication for the relative age of a vertical succession of strata.

There are situations where it potentially fails -- for example, in cave deposits. In this situation, the cave contents are younger than both the bedrock below the cave and the suspended roof above. However, note that because of the " principle of cross-cutting relationships" , careful examination of the contact between the cave infill and the surrounding rock will reveal the true relative age relationships, as will the "principle of inclusion" if fragments of the surrounding rock are found within the infill. Cave deposits also often have distinctive structures of their own e.

These geological principles are not assumptions either. Each of them is a testable hypothesis about the relationships between rock units and their characteristics. They are applied by geologists in the same sense that a "null hypothesis" is in statistics -- not necessarily correct, just testable. In the last or more years of their application, they are often valid, but geologists do not assume they are. They are the "initial working hypotheses" to be tested further by data.

Using these principles, it is possible to construct an interpretation of the sequence of events for any geological situation, even on other planets e. The simplest situation for a geologist is a "layer cake" succession of sedimentary or extrusive igneous rock units arranged in nearly horizontal layers. In such a situation, the " principle of superposition" is easily applied, and the strata towards the bottom are older, those towards the top are younger. For example, wave ripples have their pointed crests on the "up" side, and more rounded troughs on the "down" side.

Many other indicators are commonly present, including ones that can even tell you the angle of the depositional surface at the time "geopetal structures" , "assuming" that gravity was "down" at the time, which isn't much of an assumption: In more complicated situations, like in a mountain belt, there are often faults, folds, and other structural complications that have deformed and "chopped up" the original stratigraphy. Despite this, the "principle of cross cutting relationships" can be used to determine the sequence of deposition, folds, and faults based on their intersections -- if folds and faults deform or cut across the sedimentary layers and surfaces, then they obviously came after deposition of the sediments.

You can't deform a structure e. Even in complex situations of multiple deposition, deformation, erosion, deposition, and repeated events, it is possible to reconstruct the sequence of events. Even if the folding is so intense that some of the strata is now upside down, this fact can be recognized with "way up" indicators. No matter what the geologic situation, these basic principles reliably yield a reconstructed history of the sequence of events, both depositional, erosional, deformational, and others, for the geology of a region. This reconstruction is tested and refined as new field information is collected, and can be and often is done completely independently of anything to do with other methods e.

The reconstructed history of events forms a "relative time scale", because it is possible to tell that event A occurred prior to event B, which occurred prior to event C, regardless of the actual duration of time between them. Sometimes this study is referred to as "event stratigraphy", a term that applies regardless of the type of event that occurs biologic, sedimentologic, environmental, volcanic, magnetic, diagenetic, tectonic, etc. These simple techniques have widely and successfully applied since at least the early s, and by the early s, geologists had recognized that many obvious similarities existed in terms of the independently-reconstructed sequence of geologic events observed in different parts of the world.

One of the earliest relative time scales based upon this observation was the subdivision of the Earth's stratigraphy and therefore its history , into the "Primary", "Secondary", "Tertiary", and later "Quaternary" strata based mainly on characteristic rock types in Europe. The latter two subdivisions, in an emended form, are still used today by geologists. The earliest, "Primary" is somewhat similar to the modern Paleozoic and Precambrian, and the "Secondary" is similar to the modern Mesozoic.

Another observation was the similarity of the fossils observed within the succession of strata, which leads to the next topic. As geologists continued to reconstruct the Earth's geologic history in the s and early s, they quickly recognized that the distribution of fossils within this history was not random -- fossils occurred in a consistent order. This was true at a regional, and even a global scale. Furthermore, fossil organisms were more unique than rock types, and much more varied, offering the potential for a much more precise subdivision of the stratigraphy and events within it.

The recognition of the utility of fossils for more precise "relative dating" is often attributed to William Smith, a canal engineer who observed the fossil succession while digging through the rocks of southern England. But scientists like Albert Oppel hit upon the same principles at about about the same time or earlier. In Smith's case, by using empirical observations of the fossil succession, he was able to propose a fine subdivision of the rocks and map out the formations of southern England in one of the earliest geological maps Other workers in the rest of Europe, and eventually the rest of the world, were able to compare directly to the same fossil succession in their areas, even when the rock types themselves varied at finer scale.

For example, everywhere in the world, trilobites were found lower in the stratigraphy than marine reptiles. Dinosaurs were found after the first occurrence of land plants, insects, and amphibians. Spore-bearing land plants like ferns were always found before the occurrence of flowering plants. The observation that fossils occur in a consistent succession is known as the "principle of faunal and floral succession". The study of the succession of fossils and its application to relative dating is known as "biostratigraphy". Each increment of time in the stratigraphy could be characterized by a particular assemblage of fossil organisms, formally termed a biostratigraphic "zone" by the German paleontologists Friedrich Quenstedt and Albert Oppel.

These zones could then be traced over large regions, and eventually globally. Groups of zones were used to establish larger intervals of stratigraphy, known as geologic "stages" and geologic "systems". The time corresponding to most of these intervals of rock became known as geologic "ages" and "periods", respectively. By the end of the s, most of the presently-used geologic periods had been established based on their fossil content and their observed relative position in the stratigraphy e.

These terms were preceded by decades by other terms for various geologic subdivisions, and although there was subsequent debate over their exact boundaries e. By the s, fossil succession had been studied to an increasing degree, such that the broad history of life on Earth was well understood, regardless of the debate over the names applied to portions of it, and where exactly to make the divisions. All paleontologists recognized unmistakable trends in morphology through time in the succession of fossil organisms. This observation led to attempts to explain the fossil succession by various mechanisms.

Perhaps the best known example is Darwin's theory of evolution by natural selection. Note that chronologically, fossil succession was well and independently established long before Darwin's evolutionary theory was proposed in Fossil succession and the geologic time scale are constrained by the observed order of the stratigraphy -- basically geometry -- not by evolutionary theory. For almost the next years, geologists operated using relative dating methods, both using the basic principles of geology and fossil succession biostratigraphy.

Various attempts were made as far back as the s to scientifically estimate the age of the Earth, and, later, to use this to calibrate the relative time scale to numeric values refer to "Changing views of the history of the Earth" by Richard Harter and Chris Stassen. Most of the early attempts were based on rates of deposition, erosion, and other geological processes, which yielded uncertain time estimates, but which clearly indicated Earth history was at least million or more years old. A challenge to this interpretation came in the form of Lord Kelvin's William Thomson's calculations of the heat flow from the Earth, and the implication this had for the age -- rather than hundreds of millions of years, the Earth could be as young as tens of million of years old.

This evaluation was subsequently invalidated by the discovery of radioactivity in the last years of the 19th century, which was an unaccounted for source of heat in Kelvin's original calculations. With it factored in, the Earth could be vastly older. Estimates of the age of the Earth again returned to the prior methods. The discovery of radioactivity also had another side effect, although it was several more decades before its additional significance to geology became apparent and the techniques became refined.

Because of the chemistry of rocks, it was possible to calculate how much radioactive decay had occurred since an appropriate mineral had formed, and how much time had therefore expired, by looking at the ratio between the original radioactive isotope and its product, if the decay rate was known. Many geological complications and measurement difficulties existed, but initial attempts at the method clearly demonstrated that the Earth was very old. Radiometric dating , also known as radioactive dating, is what we use to determine the age of rocks.

To be more specific, it is a method used to date rocks based on the known decay rate of radioactive isotopes that are found within the rocks. This decay rate is referring to radioactive decay , which is the process by which an unstable atomic nucleus loses energy by releasing radiation. This release of energy allows the nucleus to become more stable. There are different types of radioactive decay. If a nucleus is unstable because it is too big or has too many protons, then we might see alpha decay , which is a type of radioactive decay where an alpha particle is emitted.

An alpha particle is two protons and two neutrons bound together, which is the same as a helium nucleus. If we have a nucleus where the neutron-to-proton ratio is too great, we might see beta decay , which is a type of radioactive decay where a beta particle is emitted. A beta particle is an electron that is emitted from the nucleus. With beta decay, a neutron essentially loses an electron, turning into a proton. If the nucleus has too much energy and wants to move to a more stable lower energy state, we might see gamma decay , which is a type of radioactive decay where a gamma ray is emitted.

A gamma ray is a high-energy photon. Unlike alpha and beta decay, this type of decay does not release a particle. Therefore, the number of protons or neutrons within a nucleus does not change, but energy is released, allowing the nucleus to reorganize itself into a more stable state. To unlock this lesson you must be a Study. Did you know… We have over college courses that prepare you to earn credit by exam that is accepted by over 1, colleges and universities. You can test out of the first two years of college and save thousands off your degree.

Anyone can earn credit-by-exam regardless of age or education level. To learn more, visit our Earning Credit Page. Not sure what college you want to attend yet? The videos on Study. Students in online learning conditions performed better than those receiving face-to-face instruction. Explore over 4, video courses. Find a degree that fits your goals. Principles of Radiometric Dating Radiometric dating is a method used to determine the age of rocks and other materials based on the rate of radioactive decay.

Learn about three common types of radioactive decay: Try it risk-free for 30 days. An error occurred trying to load this video. Try refreshing the page, or contact customer support. Register to view this lesson Are you a student or a teacher? I am a student I am a teacher. What teachers are saying about Study. Are you still watching? Your next lesson will play in 10 seconds. Add to Add to Add to. Want to watch this again later? Relative Dating with Fossils: Index Fossils as Indicators of Time. What is Radioactive Dating?

What is Relative Dating? Methods of Geological Dating: Numerical and Relative Dating. Sea Floor Spreading and Polar Reversal. How to Read Topographic and Geologic Maps. Theories of Geological Evolution: What is Relative Age? Major Eons, Eras, Periods and Epochs. Effect of Erosion and Deposition on Landforms. Alfred Wegener's Theory of Continental Drift. Paleomagnetism and Hot Spots: Evidence for Plate Tectonics. Introduction to Physical Geology: Intro to Natural Sciences.

Middle School Earth Science: Weather and Climate Science: UExcel Weather and Climate: Guns, Germs, and Steel Study Guide.


principle behind radiometric dating

Navigation menu VIDEO

How Carbon Dating Works